1. Home >
  2. News >
  3. Features >
  4. Breaking Ground: Santiago L贸pez-Ridaura supports farmers facing tough decisions

Breaking Ground: Santiago L贸pez-Ridaura supports farmers facing tough decisions

Postcard_santiago lopez

Farmers frequently encounter trade-offs between maximizing short-term profits and ensuring sustainable, long-term production. Santiago L贸pez-Ridaura, a senior scientist at the International Maize and Wheat Improvement Center (CIMMYT), says these trade-offs are even more complicated for small-scale farmers who grow a mix of crops and raise livestock. With computer models to play out different scenarios, he and his team are helping them find optimal solutions.

鈥淚f you have $100, one hectare of maize, a half hectare of beans and three cows, you have limited resources,鈥 indicates L贸pez-Ridaura. 鈥淵ou have to decide how you allocate those resources.鈥

Should the farmer use the money to buy new equipment or vaccinate the cows? What would happen if the farmer replaced the half-acre of beans with maize? These trade-offs, L贸pez-Ridaura explains, are one aspect of a farming system鈥檚 complexity.

鈥淭he other is that these farmers are trying to satisfy multiple objectives,鈥 he adds. 鈥淭hey want to generate income. They want to produce enough food to feed their family and they may be trying to maintain cultural values.鈥

For example, a hybrid maize variety may produce higher yields under certain growing conditions, but the farmer could decide to continue growing the native variety because it carries cultural or even religious importance. Seasonal migration for off-farm jobs, climate change and access to markets are just some of the other factors that further complicate the decision-making process. L贸pez-Ridaura points out many models in the past have failed to capture these complexities because they have focused on one objective: productivity at the plot level.

鈥淥ur models show the bigger picture. They take a lot of time to develop, but they鈥檙e worth it,鈥 says L贸pez-Ridaura.

Custom solutions to farming challenges

The models start with hundreds of in-depth household surveys from a specific region. L贸pez-Ridaura and his team then organize the large pool of data into several categories of farming systems.

鈥淲e make a model that says, 鈥極K, this farm in Oaxaca, Mexico, has five hectares, 20 sheep and five people,鈥 he explains. 鈥淲e know how much the animals need to eat, how much the people need to eat, how much the farm produces and how much production costs.鈥

He and his team can then adjust certain factors in the model to explore different outcomes. For example, they can see how much water the farmer could use for irrigation to maximize his/her yields without depleting the local water supply during a drought. They can see which farmers would be the most vulnerable to a commodity crop price drop or who would benefit from a new policy.

Senior scientist Santiago Lopez-Ridaura (left) asks a farmer in Guatemala about his priorities 鈥 produce food, generate income, maintain soil health and feed his livestock 鈥 and the reasons behind his agricultural practices. (Photo: Carlos Sum/Buena Milpa)
Santiago L贸pez-Ridaura (left) asks a farmer in Guatemala about his priorities 鈥 produce food, generate income, maintain soil health and feed his livestock 鈥 and the reasons behind his agricultural practices. (Photo: Carlos Sum/Buena Milpa)

鈥淭he political guys often want a simple solution so they may say, 鈥榃e should subsidize inputs such as seeds and fertilizers.鈥 In Mexico, for example, you might miss 60-70% of farmers as they don鈥檛 use much of these inputs,鈥 L贸pez-Ridaura says. 鈥淪o that鈥檚 great for 30% of the population, but why don鈥檛 we think about the other 70%? We must be able to suggest alternatives from a basket of options, considering the diversity of farming systems.鈥

L贸pez-Ridaura emphasizes that the models on their own do not provide solutions. He and his research team work with farmers to learn what they identify as their main challenges and how best to support them.

鈥淲e have networks of farmers in Guatemala and Oaxaca, and some may say, 鈥榃ell, our main challenge is being self-sufficient with forage crops,鈥 and we鈥檒l say, 鈥極K, why don鈥檛 we try a crop rotation with forage crops? Our model suggests that it might be an appropriate option.鈥欌

He and his team can then help the farmers access the right kind of seed and find out how best to grow it. This relationship is not a one-way street. The farmers also provide feedback on what is or is not working on the ground, which helps the researchers improve the accuracy of their models. This approach helps the researchers, farmers and policymakers understand different pathways forward and develop locally adapted, sustainable solutions.

Santiago L贸pez-Ridaura and his team work in Africa, Latin America and South Asia. Their funding often comes from development agencies such as IFAD and USAID.