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The	Breeding	Cycle



The	breeder’s	(favorite)	equation:
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genetic	gain	over	time

years	per	cycle

selection	intensity selection	accuracy

genetic	variance

Selection	Intensity
ü Increase	(to	a	limit)
ü Need	bigger	populations

Selection	Accuracy	
ü Increase	
ü More	precise	measurements
ü Reduce	Errors
ü Correct	for	environment

Genetic	Variance	(Diversity)
ü Increase	
ü Mixed	bag	(not	all	good)
ü A	must	have

Years	per	Cycle
ü Decrease!
ü Constant	‘rate’	of	return



Where	it	all	began…. “Recent	advances	in	molecular	genetic	
techniques	will	make	dense	marker	maps	
available	and	genotyping	many	individuals	
for	these	markers	feasible.”

“It	was	concluded	that	selection	on	genetic	
values	predicted	from	markers could	
substantially	increase	the	rate	of	genetic	
gain in	animals	and	plants…”



Where	it	got	going… “The	economy	of	scale	associated	with	these	
improvements	is	rapidly	pushing	genotyping	
below	$20	per	sample.	Projected	gains	in	the	
near	future	could	result	in	a	further	four	to	five	
fold	reduction	to	$5	or	less	per	sample.”



Where	it	came	together…
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Abstract
Genomic selection (GS) uses genomewide molecular markers 
to predict breeding values and make selections of individuals 
or breeding lines prior to phenotyping. Here we show that 
genotyping-by-sequencing (GBS) can be used for de novo 
genotyping of breeding panels and to develop accurate GS 
models, even for the large, complex, and polyploid wheat 
(Triticum aestivum L.) genome. With GBS we discovered 
41,371 single nucleotide polymorphisms (SNPs) in a set of 
254 advanced breeding lines from CIMMYT’s semiarid wheat 
breeding program. Four different methods were evaluated for 
imputing missing marker scores in this set of unmapped markers, 
including random forest regression and a newly developed 
multivariate-normal expectation-maximization algorithm, which 
gave more accurate imputation than heterozygous or mean 
imputation at the marker level, although no signifi cant differences 
were observed in the accuracy of genomic-estimated breeding 
values (GEBVs) among imputation methods. Genomic-estimated 
breeding value prediction accuracies with GBS were 0.28 
to 0.45 for grain yield, an improvement of 0.1 to 0.2 over 
an established marker platform for wheat. Genotyping-by-
sequencing combines marker discovery and genotyping of large 
populations, making it an excellent marker platform for breeding 
applications even in the absence of a reference genome 
sequence or previous polymorphism discovery. In addition, the 
fl exibility and low cost of GBS make this an ideal approach for 
genomics-assisted breeding.

GENOMIC SELECTION (GS) uses genomewide molecular 
markers to predict complex, quantitative traits in 

animal and plant breeding (Meuwissen et al., 2001). Th e 
underlying concept of GS is to model the entire comple-
ment of quantitative trait loci eff ects across the genome 
to produce a genomic estimated breeding value (GEBV), 
from which candidates can be selected by genotyping 
before phenotypic evaluation. Th e GS modeling approach 
was revolutionary in the sense that individual genetic 
eff ects were not identifi ed but all markers were incorpo-
rated into the model to generate a prediction that was the 
sum total of all genetic eff ects, regardless of how minor. 
Genomic selection models have proven to be advanta-
geous for complex traits such as grain yield where many 
loci of small eff ects control the trait (Burgueño et al., 
2012; Crossa et al., 2010; de los Campos et al., 2009; 
González-Camacho et al., 2012; Jannink et al., 2010). 
Selection on single or limited numbers of markers for 
quantitative traits oft en misses a substantial portion of 
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“…genotyping-by-sequencing	(GBS)	can	
be	used	for	de	novo	genotyping	of	
breeding	panels	and	to	develop	accurate	
GS	models,	even	for	the	large,	complex,	
and	polyploid	wheat	genome.”



Genomic	Selection
Prediction	of	total	genetic	value	using	dense	genome-wide	markers

üEstimate	Kinship	(realized	relationship)	with	markers

prediction	
model

DNA	
markers	

phenotypic	
prediction



Implementation	of	Genomic	Selection
• Remove	focus	from	line	per	se and	focus	on	individual	allele
• Rapidly	select	prior	to	phenotyping

1.	Training	population	(genotypes	+	phenotypes)
2.	Selection	candidates	(genotypes)

Heffner,	E.	L.,	M.	E.	Sorrells and	J.-L.	Jannink (2009).	"Genomic	Selection	for	Crop	
Improvement."	Crop	Science	49(1):	1-12.	DOI:	10.2135/cropsci2008.08.0512



CIMMYT	Bread	Wheat	Breeding	 Year
Total	in	Yield	

Trial

Quality	Tested	&	

Genotyped

2010 4,956 250

2011 6,685 995

2012 10,196 850

2013 9,436 886

2014 7,672 1,114

2015 8,872 1,425

Total 47,817 5,520

Training	set:	elite	breeding	lines	(n=5,520)
• Cycle	45	- 50	International	Bread	Wheat	Screening	
Nursery

• Preliminary	yield	trials	(6	environments:	1	for	quality)
• Ciudad	Obregon,	Mexico

• Milling	and	baking	phenotypes:	(1	rep/year	for	quality)

Battenfield,	S.	D.,	C.	Guzmán,	R.	C.	Gaynor,	R.	P.	Singh,	R.	J.	Peña,	S.	Dreisigacker,	A.	K.	Fritz	and	J.	A.	Poland	(2016).	
"Genomic	Selection	for	Processing	and	End-Use	Quality	Traits	in	the	CIMMYT	Spring	Bread	Wheat	Breeding	
Program."	The	Plant	Genome.	DOI:	10.3835/plantgenome2016.01.0005



Wheat	Quality	Phenotypes
• Grain	

- thousand	kernel	weight
- protein	content
- hardness

•Milling
- flour	protein
- flour	yield

• Dough
- mixograph
- alveograph

• Baking
- loaf	volume

Battenfield,	S.	D.,	C.	Guzmán,	R.	C.	Gaynor,	R.	P.	Singh,	R.	J.	Peña,	S.	Dreisigacker,	A.	K.	Fritz	and	J.	A.	Poland	(2016).	
"Genomic	Selection	for	Processing	and	End-Use	Quality	Traits	in	the	CIMMYT	Spring	Bread	Wheat	Breeding	
Program."	The	Plant	Genome.	DOI:	10.3835/plantgenome2016.01.0005



GS:	Prediction	of	wheat	quality

Sarah	Battenfield,	KSU

TRAIT PREDICTION	ACCURACY	
(r)

Test	Weight 0.725***

Grain	Hardness 0.513***

Grain	Protein 0.630***

Flour	Protein 0.604***

Flour	SDS 0.666***

Mixograph	Mix	Time 0.718***

Alveograph W 0.697***

Alveograph	P/L 0.476***

Loaf	Volume 0.638***

Battenfield,	S.	D.,	C.	Guzmán,	R.	C.	Gaynor,	R.	P.	Singh,	R.	J.	Peña,	S.	Dreisigacker,	A.	K.	Fritz	and	J.	A.	Poland	(2016).	
"Genomic	Selection	for	Processing	and	End-Use	Quality	Traits	in	the	CIMMYT	Spring	Bread	Wheat	Breeding	
Program."	The	Plant	Genome.	DOI:	10.3835/plantgenome2016.01.0005



Accelerating	Gain:	“Indirect”	Selection
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Notes:
1) select	1,000	

->	from	phenotype	of	2,000	(50%	selection	intensity)	
->	from	genotype	10,000	(10%	selection	intensity)	

2) h2 estimated	for	each	trait
3) observed	correlation	between	phenotype	and	GS	prediction

rP = hXhYrA

Falconer,	D.	S.	and	T.	F.	C.	Mackay	(1996).	Introduction	to	Quantitative	
Genetics	(4th	ed.),	Pearson	Education	

selection	intensity	
genomic

prediction	
accuracy

selection	intensity	
phenotypic

trait	
heritability



Increased	gain	from	
genomic	selection

RESPONSE

h2 rP:GS CR	/	R Increase	in	
response

TKW 0.60 0.485 1.78 78%

TESTWT 0.56 0.343 1.35 35%

GRNHRD 0.41 0.322 1.73 73%

FLRYLD 0.43 0.399 2.04 104%

GRNPRO 0.55 0.545 2.18 118%

FLRPRO 0.57 0.530 2.04 104%

FLRSDS 0.62 0.550 1.95 95%

MIXTIM 0.68 0.620 2.01 101%

MP 0.63 0.619 2.16 116%

ALVW 0.65 0.583 1.97 97%

ALVPL 0.46 0.516 2.47 147%

LOFVOL 0.63 0.486 1.70 70%

Wheat	Quality

- increased	selection	intensity	from	
ability	to	genotype	more	entries	
than	can	be	phenotyped

- expected	gain	of	1.3x	to	2.5x over	
phenotypic	selection

Battenfield,	S.	D.,	C.	Guzmán,	R.	C.	Gaynor,	R.	P.	Singh,	R.	J.	Peña,	S.	Dreisigacker,	A.	K.	Fritz	and	J.	A.	Poland	(2016).	
"Genomic	Selection	for	Processing	and	End-Use	Quality	Traits	in	the	CIMMYT	Spring	Bread	Wheat	Breeding	
Program."	The	Plant	Genome.	DOI:	10.3835/plantgenome2016.01.0005



The	Breeding	Cycle



(accelerating)	The	Breeding	Cycle



Where	it	all	began…. “Recent	advances	in	molecular	genetic	
techniques	will	make	dense	marker	maps	
available	and	genotyping	many	individuals	
for	these	markers	feasible.”

It	was	concluded	that	selection	on	genetic	
values	predicted	from	markers	could	
substantially	increase	the	rate	of	genetic	
gain in	animals	and	plants…”

“… especially	if	combined	with	
reproductive	techniques	to	

shorten	the	generation	interval.”



Hybrid	wheat!?

Genome-based establishment of a high-yielding
heterotic pattern for hybrid wheat breeding
Yusheng Zhaoa, Zuo Lia, Guozheng Liua, Yong Jianga, Hans Peter Maurerb, Tobias Würschumb, Hans-Peter Mockc,
Andrea Matrosc, Erhard Ebmeyerd, Ralf Schachschneidere, Ebrahim Kazmanf, Johannes Schachtg, Manje Gowdab,1,
C. Friedrich H. Longinb, and Jochen C. Reifa,2
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Hybrid breeding promises to boost yield and stability. The single
most important element in implementing hybrid breeding is the
recognition of a high-yielding heterotic pattern. We have developed
a three-step strategy for identifying heterotic patterns for hybrid
breeding comprising the following elements. First, the full hybrid
performance matrix is compiled using genomic prediction. Second,
a high-yielding heterotic pattern is searched based on a developed
simulated annealing algorithm. Third, the long-term success of the
identified heterotic pattern is assessed by estimating the useful-
ness, selection limit, and representativeness of the heterotic pattern
with respect to a defined base population. This three-step approach
was successfully implemented and evaluated using a phenotypic
and genomic wheat dataset comprising 1,604 hybrids and their 135
parents. Integration of metabolomic-based prediction was not as
powerful as genomic prediction. We show that hybrid wheat
breeding based on the identified heterotic pattern can boost grain
yield through the exploitation of heterosis and enhance recurrent
selection gain. Our strategy represents a key step forward in
hybrid breeding and is relevant for self-pollinating crops, which
are currently shifting from pure-line to high-yielding and resilient
hybrid varieties.

hybrid breeding | genomic prediction | heterotic pattern

Wheat production must be doubled by 2050 to cope with
increased demand arising from continuing population growth,

increasing meat and dairy consumption, and expanding biofuel use
(1). An environmentally sound approach to meeting this goal in-
volves enhancing crop yields per area rather than clearing more land
for agriculture (1); however, yield growths in wheat are stagnating in
several parts of the world, affecting 37% of the global acreage (2).
Hybrid breeding is a potential disruptive technology in selfing

species that could boost yield per area (3) and enhance yield
stability. The latter is of particular relevance for climate-smart
agriculture and low-yielding environments, where wheat is widely
grown (4). Wheat hybrids are currently cultivated on only <1%
of the global acreage, mainly because of the failure to implement
a cost-efficient hybrid seed production system, which is required
for establishment of a competitive hybrid breeding program (5).
Recently, considerable progress has been achieved in developing
alternative, more economically feasible hybridization systems,
such as the functional characterization of potential cytoplasmic
male sterility systems (6). Moreover, a proof-of-concept study
has demonstrated the use of a split-gene system for hybrid wheat
production (5), and a transgenic construct-driven system for
production of non-genetically modified hybrid maize has been
deregulated (7), which is also of interest for wheat. Consequently,
it is projected that the barriers to economically feasible hybrid
wheat production can be overcome in the next 10–15 years (8).
The success of hybrid wheat breeding depends crucially on the

clustering of suitable germplasm into heterotic groups and on the

identification of a high-yielding heterotic pattern (5). A heterotic
group is a set of genotypes displaying similar hybrid performance
when crossed with individuals from another, genetically distinct
germplasm group (9). A specific pair of two heterotic groups
expressing pronounced hybrid performance in their cross is termed
a heterotic pattern. A heterotic pattern is improved by exploiting
genetic variation generated within heterotic groups (10). Breeding
hybrids in such a manner promotes genetic divergence among
parents (11), optimizes the exploitation of heterosis and hybrid
performance, and simplifies the identification of superior single
crosses (12).
The heterotic pattern used for maize breeding in the US corn

belt, the cradle of hybrid breeding, did not exist initially (11).
The germplasm was not structured into heterotic groups, but
with the introduction of single-cross hybrids, available inbred
lines were clustered into a female pool and a male pool according
to production traits, such as seed yield. With ongoing hybrid
breeding, the male and female groups coevolved and diverged
(13), most likely owing to differential fixation of quantitative trait
locus (QTL) alleles caused by dominance or overdominance (14).
The great success of maize hybrids in the US corn belt stim-

ulated the initiation of hybrid breeding programs for several

Significance

Selfing species wheat are bred as pure-line varieties with stag-
nating yield growths. In contrast, selection gain in maize is high,
owing to massive investment sustained by hybrid seed sales,
coupled with an efficient exploitation of hybrid vigor. We have
developed a three-step strategy for establishing a heterotic
pattern, which was one of the central unsolved challenges for
initiating hybrid breeding programs. The benefits of our ap-
proach are demonstrated using data for wheat, but the strat-
egy is relevant for several autogamous crops. Our three-step
approach facilitates identification of a heterotic pattern, and
thus may contribute to meeting the global challenge of in-
creasing demand for food, feed, and fuel.
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“…we	developed	a	three-step	strategy	for	
establishing	a	heterotic pattern,	which	was	
one	of	the	central	unsolved	challenges	for	

initiating	hybrid	breeding	programs.”



…we’ve	been	doing	GBS	
here	for	a	long	time...

‘genotyping-by-SEEING’!

The	past has	become	the	present	
and	is	the	future…



+ = genetic
gain



Genomic	selection	+	High-throughput	phenotyping
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target:	measurement	of	‘secondary	traits’	that	have	a	
genetic	and/or	phenotypic	correlation	to	yield



GENOMIC SELECTION

Canopy Temperature and Vegetation Indices from
High-Throughput Phenotyping Improve Accuracy of
Pedigree and Genomic Selection for Grain Yield
in Wheat
Jessica Rutkoski,*,†,‡,1 Jesse Poland,§ Suchismita Mondal,‡ Enrique Autrique,‡ Lorena González Pérez,‡

José Crossa,‡ Matthew Reynolds,‡ and Ravi Singh‡

*International Programs, College of Agriculture and Life Sciences, and †Plant Breeding and Genetics Section, School of
Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, ‡Global Wheat Program, International Maize and
Wheat Improvement Center (CIMMYT), Ciudad de Mexico, 06600, Mexico, and §Department of Plant Pathology, Kansas
State University, Manhattan, Kansas 66506

ABSTRACT Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and
greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping
based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model
accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy
temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and
genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum
aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on
the training set were modeled as multivariate, and compared to univariate models with grain yield on the training
set only. Cross validation accuracies were estimated within and across-environment, with and without replication,
and with and without correcting for days to heading. We observed that, within environment, with unreplicated
secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain
yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased
accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In
across-environment prediction, trends were similar but less consistent. These results show that secondary traits
measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This
approach could improve selection in wheat during early stages if validated in early-generation breeding plots.

KEYWORDS
Secondary traits
in genomic
selection

GenPred
multivariate
analysis

selection index
shared data
resource

Genomic selection (GS) and high-throughput phenotyping (HTP) have
great potential to increase the efficiency of wheat, Triticum aestivum L.,
breeding programs. GS is the use of markers covering the whole ge-

nome for selection. With GS, reviewed by Lorenz et al. (2011), a
training set that has been phenotyped and genotyped is used to
calibrate a prediction model, which is then used predict the breeding
values of a ‘test set’ of genotyped selection candidates. This enables
indirect selection for quantitative traits prior to phenotyping. Ge-
nomic selection has already been implemented in dairy cattle breed-
ing to increase rates of genetic gain (Pryce and Daetwyler 2012), and
simulation studies have demonstrated that GS can increase rates of
genetic gain in crop plants (Bernardo and Yu 2007; Wong and
Bernardo 2008; Heffner et al. 2010). In contrast to GS, HTP is the
use of remote and proximal sensing to measure a large number of
phenotypes across time and space at low cost and with less labor
intensity. If traits measured using HTP are correlated with those of
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ABSTRACT Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and
greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping
based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model
accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy
temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and
genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum
aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on
the training set were modeled as multivariate, and compared to univariate models with grain yield on the training
set only. Cross validation accuracies were estimated within and across-environment, with and without replication,
and with and without correcting for days to heading. We observed that, within environment, with unreplicated
secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain
yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased
accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In
across-environment prediction, trends were similar but less consistent. These results show that secondary traits
measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This
approach could improve selection in wheat during early stages if validated in early-generation breeding plots.
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training set that has been phenotyped and genotyped is used to
calibrate a prediction model, which is then used predict the breeding
values of a ‘test set’ of genotyped selection candidates. This enables
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Bernardo 2008; Heffner et al. 2010). In contrast to GS, HTP is the
use of remote and proximal sensing to measure a large number of
phenotypes across time and space at low cost and with less labor
intensity. If traits measured using HTP are correlated with those of
economic importance, HTP data could be used to dramatically in-
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“…secondary	traits	measured	in	high-
throughput	could	be	used	in	pedigree	and	
genomic	prediction	to	improve	accuracy…”
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ü combing	high-throughput	secondary	phenotypes	and	genomic	information	
increased	prediction	accuracy
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Conclusions….
• Genomic	selection	can	increase	breeding	progress	though	
increased	selection	intensity	and	decreased	cycle	time.

• Field-based	high-throughput	phenotyping	is	in	early	stages	but	
maturing	quickly	and	demonstrated	potential	to	measure	traits	
faster	and	more	accurately.

• The	combined	power	of	genomics	and	phenomics will	lead	to	new	
eras	in	breeding	and	functional	genomics.
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