



# Maize: 50 years of CIMMYT's contributions

The quest for efficiency and impact in a crop producing 300 M tons on 90 M ha while providing >30% of food calories for 300 million people

**Greg Edmeades** 

## Phase 1: pre 1966 - 1972: Classifying, sorting and forming populations

- Rockefeller Foundation Office of Special Studies
- Collected, evaluated and classified landraces
- Formed populations targeted at specific consumer groups
- 1970-73: International Maize Adaptation Nurseries
  (IMAN): varieties from 13 countries tested in 47 countries





### Phase 2: 1972 -1985: International testing, population improvement, plant type

- Development of experiment stations
- Pool and population focus; QPM conversions
- Backup and Advanced Units: ~80 populations in combinations of adaptation, maturity, texture, color, endosperm type
- 1972: International progeny testing initiated
  - 1988 1000 OPV trials/year: a stream of germplasm
- Direct germplasm transfers to climate analogs
- Collaboration with socioeconomists: OFR
- Strengthened NARS through reciprocal visits
- Improving plant type



## Beauty and the Beast: changing partitioning by reducing plant height





### Shorter plants: more efficient, lodging resistant, and tolerant of high density







# On-farm research – an important technology test-bed











### Phase 3: 1985-1996: Methodologies: hybrids, stress tolerance, conservation

- 1985: Dr S.K Vasal appointed Hybrid Maize breeder
  - Developing heterotic groups: Group A (Tuxpeño types) and B (non-Tuxpeños)
  - Today: 577 fully characterized CMLs available on request
- Stress tolerance needed in tropical environments!
  - Insects: Mainly after 1977 (bazooka!)
  - Diseases: notably DMR (70s), MSV (80s), GLS (90s) and MLN (today)
  - Abiotic: drought (1975), soil acidity (1977), low N (1986), waterlogging (2003), heat (2011)
- Megaenvironments and priority setting
  - Lowlands 60%; midaltitude 34%; highland 6%
- Wellhausen-Anderson Germplasm Bank
  - Now iso-certified with 28,000 accessions, backed by Svalbard





## Drought: kernel loss a common problem

To the rescue: Partitioning for faster ear growth









### Tropical maize grows in N stressed environments

Low soil fertility in Kenya ...... and in Mexico







### Complementary maize agronomy

- Poor agronomic practices are common
- Exploits G x E x M
- 20-30% of staff were agronomists
- Now: large sustainable intensification efforts in Africa, Mexico and South Asia using conservation tillage, remote sensing, big data and smart phones.





#### Phase 4: 1997- 2006 Pivot to sub-Saharan Africa

- Collaboration with IITA became much closer
- Focus on stress tolerance low N and drought, and major diseases
  - Heterosis improves stress tolerance
- Decentralizing:
  - Director of GMP based in Nairobi
  - Significant increase in IRS based in SS Africa; a later surge to Asia



## Internationally recruited staff numbers followed funding trends and priorities



## Phase 5: 2007- 2016: Projects, Progress and PPPs

- Large longer-term projects
  - Stress tolerance projects for
    - Africa (DTMA, WEMA, IMAS, now STMA and TAMASA)
    - Asia (HTMA);
    - Latin America (acid soils)
  - Sustainable maize systems
    - SIMLESA, CSISA and TAMASA
  - Seed deployment
    - NSIMA, DTMASS Eastern and southern Africa
    - MASAGRO IMIC-LA in Mexico
  - Genetic diversity
    - SeeD in Mexico
- PPPs through projects WEMA, IMAS and the IMICs







- **1996-98 studies** (Morris et al):
  - Hybrids dominated (95%) seed sales of tropical maize
  - 62% area to modern varieties; 36% of this CIMMYT
  - Rate of return: estimated at 24 to 95
- QPM: Many releases, total area grown 1.4 M ha
- 2016 anecdotal: ~40% of all tropical commercial releases trace to CIMMYT germplasm





#### People motivated by a vision

Improve resilience, income, nutrition, and productivity of poor and vulnerable families that depend on maize

Gender has a clear role in ensuring research effectiveness



 "CIMMYT Maize Program produces two main products: improved germplasm and trained, motivated and focused research staff" - Ernie Sprague

# A history of competent and inspile

















#### We stand in the shadow of giants...







Dr. Elmer C. Johnson

Dr. Surinder K. Vasal

Dr. Hugo Cordova





### Our amazing support staff



### The Global Maize Program today

- 46 IRS and 210 LRS in 14 countries
- 1.2 million seed envelopes shipped annually
- Largest managed stress screening network in SSA
  - Heat tolerance in Asia and Africa
- Seed support:
  - 20% staff are seed specialists, work with >200 seed companies
- Seed sales by partners
  - DTMA: 230 released hybrids and OPVs producing >60,000 tons of certified drought-tolerant maize seed/year
  - IMIC Latin America company sales 24,000 tons in 2015
- Staff gender balance improving ..... Now 15% female



### Defending gains against threats

#### MLN: Reported first in 2012

- 2014-15: Losses worth \$110 M
- Screening center established in Naivasha, Kenya
  - 5 MLN tolerant hybrids released in East Africa, 22 more in NPTs

#### Striga

- Tolerance
- imazapyr-resistant seed





#### **Accelerating gains**

- Doubled haploid technology halves time to produce an inbred line
  - 80,000 DH lines produced this year in Kenya and Mexico
  - Tropically adapted inducers now available
- Marker-assisted breeding: MARS/Genomic selection doubles rate of gain under drought
  - Production markers: 30,000 DH lines screened for MSV; ready for haploid induction rate and nutritional traits
- Introgression of elite temperate lines
- High throughput phenotyping: remote and proximal sensing
- New genetic variation from SeeD (e.g. TSC)
- Transgenes and gene editing



### The age of the CRP - MAIZE



#### Launched in 2012

- Staff: CIMMYT (76%) and IITA (24%) with >350 partners
- Team of breeders, agronomists, socioeconomists and gender specialists

#### • In 2015:

- 18 million farmers benefited from 8 M ha of varieties derived from MAIZE germplasm; 64 new releases
- "Nutrient Expert"
- High throughput phenotyping

#### The next generation of scientists:

- PhD, MS training: 51 graduated in 2015
- 40,000 people /yr (30% female) attend training events



#### Unfinished business...

- Genetic gain
  - Mainlining marker-assisted selection
  - Partitioning and high plant density tolerance
- Climate change: Increase rate of varietal turnover
- Stable and long-term funding for a program with proven performance
  - Unrestricted core funds (W1/W2): 67% (1983); 40% (2006); 8% (2016)
  - The long look: Drought tolerance = 40 years of continuous investment. The main breeding program has the same needs



### Acknowledgements

- Congratulations, CIMMYT Maize staff!
- Our NARS colleagues and partners
- Investors: no investors = no program
- Our hosts: the Mexican Government and its people
- Our families: for their patience, support and share in the vision
- Directors; Prasanna, Erenstein, Bänziger, CRP Manager Watson and Mike Listman

#### **Dedicated to**

Resource-poor maize farming families for whom we remain committed to providing better choices in life







